

ELEKTRISCHE ANTRIEBE

Lernziele

Die Teilnehmenden kennen die wesentlichen für moderne Traktionsantriebe geeigneten Typen elektrischer Maschinen. Sie sind mit den physikalischen Wirkmechanismen innerhalb der Maschinen vertraut und können ihr Betriebsverhalten am Wechselrichter stationär beschreiben. Sie sind in der Lage, anhand von Spezifikationen einen elektromechanischen Energiewandler grob zu entwerfen. Sie haben erste Erfahrungen mit der Prüfung elektrischer Fahrmotoren und können die Test-Ergebnisse beurteilen. Die Teilnehmenden verstehen die Methoden der modellbasierten Entwicklung von Reglerfunktionen für elektrische Antriebssysteme und können diese in der Praxis anwenden. Sie können Signalflusspläne als Sprachmittel der Steuerungs- und Regelungstechnik zur Entwicklung von Steuergeräte-Software einsetzen. Sie sind in der Lage, effizienten Steuergeräte-Softwarecode durch teilautomatisierte Zeit- und Wertediskretisierung sowie den Einsatz von Autocodegeneratoren zu entwickeln.

Lehrinhalte

- 1. Elektrische Maschinen und Antriebe
- 1.1 Wichtige elektrische Maschinen für Traktionsantriebe
- 1.2 Grundlagen elektrischer Maschinen: Werkstoffe, Verlustmechanismen, Kühlung, Nutzfelder und Streuung
- 1.3 Entwurf mit Kenngrößen
- 1.4 Stationäres Betriebsverhalten von Drehfeldmaschinen am Wechselrichter
- 1.5 Drehfeldbildung und Drehstromwicklungen

2. Modellbasierte Regelung elektrischer Antriebe

- 2.1 Vorgehensmodell modellbasierte Softwareentwicklung
- 2.2 Entwurf von Reglerfunktionen für elektrische Antriebe
- 2.3 Modellierung und Simulation von Regelkreisen für elektrische Antriebssysteme in MATLAB/Simulink
- 2.4 Auto-Code-Generierung
- 2.5 Validierung und Verifikation der Antriebsregler

3. Labor Elektrische Maschinen und Antriebe

- 3.1 Aufbau von Prüffeldern für elektrifizierte Antriebe im KFZ
- 3.2 Prüfung eines elektrischen Traktionsantriebs für Elektro- oder Hybrid-Fahrzeug
- 3.3 Modellbildung und Simulation der Dynamik eines Antriebssystems; Entwurf und Modellbildung von Drehmomenten-, Drehzahl- und Positionsreglern
- 3.4 Auto-Code-Generierung und Inbetriebnahme der Regler auf Antriebssystem

Termine	14.03.2025 15.03.2025 21.03.2025 22.03.2025 04.04.2025 05.04.2025 12.04.2025 Geringfügige Änderungen seitens der Lehrenden möglich
	Anmeldeschluss: 27.02.2025
Ort	Hochschule Esslingen, Hochschule Heilbronn
Niveau/Level	Master
Voraussetzungen	Grundlagen Elektromagnetismus und Dynamik, Wechselstromlehre in komplexer Notation, Kenntnisse der Grundtypen elektrischer Maschinen und ihres stationären Betriebsverhaltens am Netz, Embedded-Software-Entwicklung in C, Grundlagen der Steuerungs- und Regelungstechnik, Grundkenntnisse in MATLAB/Simulink
Sprache	DE
Workload	48 UE Präsenz 102 UE Selbststudium/Prüfungsvorbereitung
Didaktisches Konzept	Didaktisch sinnvolle Kombination aus Präsenzstudium und selbst gesteuertem Lernen
Prüfungsform	Klausur: 120
Abschluss	Teilnahmebescheinigung
Professionelle Lernumgebung	Unsere Zertifikatskurse sind jeweils in einen thematisch passenden Studiengang eingebettet, sodass alle Teilnehmenden von aktuellem Hochschulwissen profitieren können
Kursgebühr	1.600 EUR
Fördermöglichkeit	ESF