

## **TECHNISCHE INFORMATIK**

## Lernziele

In der Lehrveranstaltung werden Steueralgorithmen am realen Steuergerät sowohl praktisch umgesetzt als auch getestet (traditionell in C und modellbasiert). Die Teilnehmenden verstehen die Funktionsweise von elektronischen Steuergeräten auf Basis von Mikrocontrollerplattformen sowie des modellbasierten Softwareentwurfes und können hierzu die erforderlichen Schaltungen entwerfen.

## Lehrinhalte

- 1. Softwareentwicklung mit MATLAB
- 2. Modellbasierte Funktionsentwicklung mit MATLAB Simulink
- 3. Zustandsautomaten mit MATLAB Stateflow
- 4. Automatische Code-Generierung mit MATLAB Embedded Coder
- 5. Physical Computing mit Arduino und Raspberry Pi
- 6. Grundkenntnisse in Linux

|  | 11.03.2025                                            |
|--|-------------------------------------------------------|
|  | 11.03.2025                                            |
|  | 12.03.2025                                            |
|  | 12.03.2025                                            |
|  | 13.03.2025                                            |
|  | 13.03.2025                                            |
|  | 14.03.2025                                            |
|  | 14.03.2025                                            |
|  | Geringfügige Änderungen seitens der Lehrenden möglich |

**Dauer** 4 - 6 Wochen, i.d.R. freitags von 15:30 – 20:30 Uhr und/oder samstags von 09:30 – 16:45 Uhr

| Ort                            | Online, Hochschule Aalen                                                                                                                                                               |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Niveau/Level                   | Bachelor                                                                                                                                                                               |
| Voraussetzungen                | Formal: -<br>Inhaltlich: Grundlagen der Elektronik und Informatik, Grundkenntnisse einer<br>Programmiersprache                                                                         |
| Sprache                        | DE                                                                                                                                                                                     |
| Workload                       | 30 UE Präsenz<br>20 UE geleitetes E-Learning<br>100 UE Selbststudium/Prüfungsvorbereitung                                                                                              |
| Didaktisches Konzept           | Die Lerninhalte werden durch Beispiel-Aufgaben ergänzt. Zusammenfassungen am<br>Ende des Kapitels dienen zur Lernkontrolle. Jeder Lernabschnitt wird mit einem<br>Labor abgeschlossen. |
| Prüfungsform                   | schriftliche Klausurarbeiten: 60 Mintuen                                                                                                                                               |
| Abschluss                      | Hochschulzertifikat mit ECTS nach bestandener Prüfung<br>Teilnahmebescheinigung                                                                                                        |
| Professionelle<br>Lernumgebung | Unsere Zertifikatskurse sind jeweils in einen thematisch passenden Studiengang<br>eingebettet, sodass alle Teilnehmenden von aktuellem Hochschulwissen profitieren<br>können           |
| Kursgebühr                     | 1.600 EUR                                                                                                                                                                              |
| Fördermöglichkeit              | ESF                                                                                                                                                                                    |