MODULHANDBUCH
(Externenprüfungsordnung der Hochschule Esslingen vom 25.06.2019)

Stand 02.06.2022
Inhaltsverzeichnis

Semester 1 ... 4
Theoretische Grundlagen der Elektromobilität .. 5
Mobilitätskonzepte und Infrastruktur ... 8
Systemsimulation ... 11
Werkstoffe und Leichtbau für Elektromobilität .. 13

Semester 2 ... 16
Elektrische Antriebe .. 17
Elektromobile Fahrzeugsysteme .. 20
Leistungselektronik und Sicherheitskonzepte .. 23
Antriebsstrang und -systeme ... 26
Transferprojekt I .. 28

Semester 3 ... 30
Systems Engineering ... 31
Fahrer und Fahrstrategien .. 34
Mobile Energiesysteme ... 37
Transferprojekt II .. 40

Semester 4 ... 42
Mastermodul ... 43
Hinsichtlich der Verteilung der Module auf die einzelnen Semester kann es aus organisatorischen Gründen Abweichungen vom Curriculum geben. Es wird aber gewährleistet, dass es durch die Verschiebung zu keiner Beeinträchtigung der Studierbarkeit kommt.

Verwendete Abkürzungen der Prüfungsarten:

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>Auswertungsbericht</td>
</tr>
<tr>
<td>BA</td>
<td>Bachelorarbeit</td>
</tr>
<tr>
<td>BE</td>
<td>Bericht</td>
</tr>
<tr>
<td>BL</td>
<td>Blockveranstaltung</td>
</tr>
<tr>
<td>BV</td>
<td>Besonderes Verfahren</td>
</tr>
<tr>
<td>EW</td>
<td>konstruktiver Entwurf</td>
</tr>
<tr>
<td>HA</td>
<td>Hausarbeit</td>
</tr>
<tr>
<td>HR</td>
<td>Hausarbeit/Referat</td>
</tr>
<tr>
<td>KL</td>
<td>Klausur</td>
</tr>
<tr>
<td>KO</td>
<td>Konstruktion</td>
</tr>
<tr>
<td>KO</td>
<td>Kolloquium</td>
</tr>
<tr>
<td>LA</td>
<td>Laborarbeit</td>
</tr>
<tr>
<td>MA</td>
<td>Masterarbeit</td>
</tr>
<tr>
<td>ML</td>
<td>Mündliche Leistung</td>
</tr>
<tr>
<td>MP</td>
<td>Mündliche Prüfung</td>
</tr>
<tr>
<td>PA</td>
<td>Projektarbeit</td>
</tr>
<tr>
<td>PK</td>
<td>Protokoll</td>
</tr>
<tr>
<td>PO</td>
<td>Portfolio</td>
</tr>
<tr>
<td>PR</td>
<td>Praktische Arbeit</td>
</tr>
<tr>
<td>RE</td>
<td>Referat</td>
</tr>
<tr>
<td>ST</td>
<td>Studienarbeit</td>
</tr>
<tr>
<td>TE</td>
<td>Testat</td>
</tr>
</tbody>
</table>

Modulübersicht

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Semester 2</th>
<th>Semester 3</th>
<th>Semester 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretische Grundlagen der Elektromobilität</td>
<td>Elektrische Antriebe</td>
<td>Systems Engineering</td>
<td>Master-Thesis</td>
</tr>
<tr>
<td>Mobilitätskonzepte und Infrastruktur</td>
<td>Elektromobile Fahrzeugsysteme</td>
<td>Fahrer und Fahrstrategien</td>
<td></td>
</tr>
<tr>
<td>Systemsimulation</td>
<td>Leistungselektronik und Sicherheitskonzepte</td>
<td>Mobile Energiesysteme</td>
<td></td>
</tr>
<tr>
<td>Werkstoffe und Leichtbau für Elektromobilität</td>
<td>Antriebsstrang und Systeme</td>
<td>Transferprojekt II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transferprojekt I</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Semester 1
Theoretische Grundlagen der Elektromobilität

<table>
<thead>
<tr>
<th>Studienangebot</th>
<th>Master Elektromobilität (berufsbegleitend)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulnummer</td>
<td>4513</td>
</tr>
<tr>
<td>SPO-Version</td>
<td>2.0</td>
</tr>
<tr>
<td>Modulverantwortlicher</td>
<td>Prof. Dr. Karl-Heinz Steglich</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>1</td>
</tr>
<tr>
<td>Angebotshäufigkeit/ Dauer des Moduls</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Credits</td>
<td>5</td>
</tr>
<tr>
<td>Workload Präsenz oder virtuelle Präsenz</td>
<td>50 h</td>
</tr>
<tr>
<td>Workload geleitetes E-Learning</td>
<td>0 h</td>
</tr>
<tr>
<td>Workload Selbststudium</td>
<td>50 h</td>
</tr>
<tr>
<td>Workload Prüfungsvorbereitung und Prüfungsdurchführung</td>
<td>50 h</td>
</tr>
<tr>
<td>Verwendung in anderen Studienangeboten</td>
<td>Master Wasserstoff- und Brennstoffzellentechnologie</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>Grundkenntnisse für LV a) und b), wie sie in einem ingenieurwissenschaftlichen Bachelor-Studium erworben werden</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Enthaltene Lehrveranstaltungen</td>
<td>a) Einführung in die Elektro-/Regelungstechnik (2 ECTS)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b) Mathematik (2 ECTS)</td>
</tr>
<tr>
<td></td>
<td>c) Matrixorientierte Programmierung und Systemsimulation (1 ECTS)</td>
</tr>
<tr>
<td>Lehrende/r</td>
<td>a) Prof. Dr. Karl-Heinz Steglich</td>
</tr>
<tr>
<td></td>
<td>b) und c) Yvonne Beck</td>
</tr>
<tr>
<td>Art der Lehrveranstaltung</td>
<td>Vorlesung, Übung</td>
</tr>
<tr>
<td>Art und Dauer des Leistungsnachweises/ Voraussetzungen für die Vergabe von ECTS-Punkten</td>
<td>Klausur (KL) 120 Min. (40% Teil a), 60% Teil b) und c))</td>
</tr>
</tbody>
</table>
Ermittlung der Modulnote

100% KL

Voraussetzung für die Zulassung zur Modulprüfung

-

Zertifikatskurs

Ja

Bemerkungen

Lehrinhalte

a) Einführung in die Elektro-/Regelungstechnik
 - Grundlagen Gleich- und Wechselstromtechnik
 - Berechnung von Wechsel-/Drehstromnetzen
 - Elektrische Leistung in Gleich-/Wechsel-/Drehstromnetzen
 - Elektromagnetismus, Spannungsinduktion
 - Lineare Systeme im Zeitbereich, Differentialgleichungen
 - Modellierung dynamischer Zustandsraummodelle
 - Lineare Systeme im Frequenzbereich
 - Laplace-Transformation, Frequenzgänge, Stabilität
 - Übertragungsfunktionen im Regelkreis
 - Matlab Control System Toolbox

b) Mathematik
 - Komplexe Rechnung
 - Matrizen
 - Verfahren zur Lösung von Gleichungssystemen
 - Polynome
 - Differentialgleichungen (DGL) und Anfangswertprobleme (AWP)

c) Matrixorientierte Programmierung
 - Matlab
 - Simulink

Fachkompetenz

Überfachliche Kompetenzen

Literatur

a) Einführung in die Elektro-/Regelungstechnik
- Skriptum zur Vorlesung
- Hagmann, Gert: Grundlagen der Elektrotechnik sowie Aufgabensammlung zu den Grundlagen der Elektrotechnik, Aula, 2017
- Büttner, Wolf-Ewald: Grundlagen der Elektrotechnik 1 / 2, Oldenbourg, 2012 / 2014
- Frohne, Heinrich, Löcherer, Karl-Heinz, Müller, Hans, Harriehausen, Thomas: Moeller Grundlagen der Elektrotechnik, Vieweg+Teubner, 2011 alternativ:
- Lunze, Jan: Regelungstechnik 1/2, Springer Verlag, 2016
- Föllinger, Otto: Regelungstechnik: Einführung in die Methoden und ihre Anwendung, VDE, 2016

b) Mathematik
- Skriptum zur Vorlesung
- Papula, Lothar, Mathematik für Ingenieure und Naturwissenschaftler, Band 1: Lehr- und Arbeitsbuch für das Grundstudium, Vieweg+Teubner 2009 (oder neuere Auflage)
- Papula, Lothar, Mathematik für Ingenieure und Naturwissenschaftler, Band 2: Lehr- und Arbeitsbuch für das Grundstudium, Vieweg+Teubner 2009 (oder neuere Auflage)
- Papula, Lothar, Mathematische Formelsammlung für Ingenieure und Naturwissenschaftler, Vieweg+Teubner 2009 (oder neuere Auflage)

c) Matrixorientierte Programmierung und Systemsimulation
- Günter M. Gramlich: Eine Einführung in MATLAB – Aus Sicht eines Mathematikers, Hochschule Ulm, 2007 (online erhältlich)
Mobilitätskonzepte und Infrastruktur

Die Teilnehmenden verstehen das Gesamtsystem Elektromobilität und können dieses aus Perspektive der Politik, der Industrie und der Nutzer beurteilen. Sie kennen das Technologie- und Innovationsmanagement auf politischen, wirtschaftlichen und gesellschaftlichen Ebenen sowie die (förder-)rechtlichen Rahmenbedingungen.

<table>
<thead>
<tr>
<th>Studienangebot</th>
<th>Master Elektromobilität (berufsbegleitend)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulnummer</td>
<td>4502</td>
</tr>
<tr>
<td>SPO-Version</td>
<td>2.0</td>
</tr>
<tr>
<td>Modulart</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Modulverantwortlicher</td>
<td>Michael Ruprecht</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>1</td>
</tr>
<tr>
<td>Angebotshäufigkeit/ Dauer des Moduls</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Credits</td>
<td>5</td>
</tr>
<tr>
<td>Workload Präsenz und virtuelle Präsenz</td>
<td>50 h</td>
</tr>
<tr>
<td>Workload geleitetes E-Learning</td>
<td>0 h</td>
</tr>
<tr>
<td>Workload Selbststudium</td>
<td>50 h</td>
</tr>
<tr>
<td>Workload Prüfungsvorbereitung und Prüfungsdurchführung</td>
<td>50 h</td>
</tr>
<tr>
<td>Verwendung in anderen Studienangeboten</td>
<td>-</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Enhaltene Lehrveranstaltungen</th>
<th>a) Das System Elektromobilität (3 ECTS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b) Nutzerverhalten und Geschäftsmodelle (1 ECTS)</td>
</tr>
<tr>
<td></td>
<td>c) Praktische Vorführung von Systemen und Funktionen (1 ECTS)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r</th>
<th>a) Michael Ruprecht, Dr. Wolfgang Fischer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b) Lutz Engel</td>
</tr>
<tr>
<td></td>
<td>c) Lutz Engel</td>
</tr>
</tbody>
</table>

| Art der Lehrveranstaltung | Vorlesung |

<table>
<thead>
<tr>
<th>Art und Dauer des Leistungsnachweises/</th>
<th>a) und b) Klausur (KL) 120 Min.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b) Referat in der Gruppe (RE) 15 Min.</td>
</tr>
</tbody>
</table>
Voraussetzungen für die Vergabe von ECTS-Punkten

Ermittlung der Modulnote 80 % KL, 20 % RE

Voraussetzung für die Zulassung zur Modulkunde -

Zertifikatskurs Ja

Bemerkungen -

Lehrinhalte

a) Das System Elektromobilität
 - Das System Elektromobilität
 - Politische Rahmenbedingungen
 - Rechtliche Rahmenbedingungen
 - Marktentwicklung Fahrzeuge
 - Ladeinfrastruktur
 - Dimensionen des Wandels durch Elektrifizierung und Digitalisierung der Mobilität
 - Implikationen des Wandels für den Standort Baden-Württemberg (Transformation, Strukturwandel)
 - Chancen, Risiken sowie Strategien zur Bewältigung des Strukturwandels
 - Innovationsmanagement
 - Kooperationen, Netzwerke und Cluster
 - Fallbeispiele Cluster Elektromobilität Süd-West und Strategiedialog Automobilwirtschaft Baden-Württemberg

b) Nutzerverhalten und Geschäftsmodelle
 - Gesellschaftliche Entwicklung, die 4 Evolutionsstufen u. der vertiefte Blick auf die Automobilindustrieeinwicklung der letzten 100 Jahre
 - Digitalisierung und ihre Auswirkung auf die Automobilindustrie
 - Wissensgesellschaft versus produktiver Wertschöpfung

c) Praktische Vorführung von Systemen und Funktionen
 - Exkursionen zu industriellen Best-Practice-Beispielen
 - Kennenlernen der Motivationen, Herangehensweisen und Konzepte der besuchten Unternehmen
 - Diskussion und Bewertung der vorgestellten Praxismodelle sowie Einordnung ihrer technischen und organisatorischen Zukunftsperspektiven

Fachkompetenz

Die Teilnehmenden können die Komplexität des mit Elektrifizierung und Digitalisierung einhergehenden Wandels und der Implikationen für die Branchen und Unternehmen beurteilen, insbesondere am Standort Baden-Württemberg sowie die Bedeutung von Kooperationen, Netzwerken und Clustern für die Innovationsfähigkeit von Unternehmen und Organisationen.

Sie erkennen die Voraussetzungen für eine Nutzerakzeptanz der Elektromobilität sowohl im B2C- als auch im B2B-Bereich, den Wandel der Industriestrukturen durch die Digitalisierung sowie die Notwendigkeit der Vernetzung verschiedener Technologien und gesellschaftlicher Fragestellungen.

Die Teilnehmenden erweitern ihre praktischen Kenntnisse im Bereich der Elektromobilität und deren Anwendung in der Praxis. Sie können die theoretischen Inhalte anhand konkreter Praxisbeispiele transferieren und die Vor- und Nachteile einzelner Lösungsvarianten besser einordnen und in ihrem Gesamtzusammenhang auch unter Einbezug zusätzlicher Rahmenbedingungen bewerten.

Überfachliche Kompetenz

Literatur
- Renn, Ortwin: Das Risikoparadox, hrsg. V. Klaus Wiegandt, Berlin 2014.
- brand eins 03/2019, Titel: Schwerpunkt: Digitalisierung.

Podcast
- Podcast: global melange; von Mario Herger; Tesla Kursrallye, VW, Daimler, BMW, und der Regenschirm
Systemsimulation

Die Teilnehmenden können dynamische mechatronische Systeme modellieren, simulieren und identifizieren. Dieses umfasst die signalflussorientierte Modellbildung mechanischer, thermischer sowie elektrischer Streckenmodelle sowie die Modellierung der informationsverarbeitenden Komponenten. Dabei sind die Teilnehmenden in der Lage, die dynamischen Wechselwirkungen insbesondere in Hinblick auf Themenbereich Elektromobilität fachübergreifend zu betrachten.

<table>
<thead>
<tr>
<th>Studienangebot</th>
<th>Master Elektromobilität (berufsbegleitend)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hochschulföderation SüdWest</td>
</tr>
<tr>
<td>Modulnummer</td>
<td>4514</td>
</tr>
<tr>
<td>SPO-Version</td>
<td>2.0</td>
</tr>
<tr>
<td>Modulart</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Modulverantwortlicher</td>
<td>Prof. Dr.-Ing. Gerd Wittler</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>1</td>
</tr>
<tr>
<td>Angebotshäufigkeit/ Dauer des Moduls</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Credits</td>
<td>5</td>
</tr>
<tr>
<td>Workload Präsenz und virtuelle Präsenz</td>
<td>42 h</td>
</tr>
<tr>
<td>Workload geleitetes E-Learning</td>
<td>8 h</td>
</tr>
<tr>
<td>Workload Selbststudium</td>
<td>80 h</td>
</tr>
<tr>
<td>Workload Prüfungsvorbereitung und Prüfungsdurchführung</td>
<td>20 h</td>
</tr>
<tr>
<td>Verwendung in anderen Studienangeboten</td>
<td>Master Wasserstoff- und Brennstoffzellentechnologie</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>Kenntnisse in Mathematik, Regelungstechnik, Elektrotechnik, Technische Mechanik</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Enthaltene Lehrveranstaltungen</td>
<td>Systemsimulation</td>
</tr>
<tr>
<td>Lehrende/r</td>
<td>Prof. Dr.-Ing. Gerd Wittler, Dr. Manuel Warwel, Dipl.-Ing. Friedhelm Schlüter</td>
</tr>
<tr>
<td>Art der Lehrveranstaltung</td>
<td>Vorlesung mit Übungen und Rechnerlabor</td>
</tr>
<tr>
<td>Ermittlung der Modulnote</td>
<td>100 % PA</td>
</tr>
<tr>
<td>Voraussetzung für die Zulassung zur Modulprüfung</td>
<td>-</td>
</tr>
</tbody>
</table>

11
Lehrinhalte

a) Vorlesung Systemsimulation
 - Einleitung und Motivation
 - Grundlagen der signalflussorientierten Systemmodellierung
 - Anwendung numerischer Simulationsverfahren und Echtzeitsimulation
 - Modellbildung von Streckenmodellen (mechanisch/ elektrisch/ thermisch / usw.)
 - Identifikationsverfahren im Zeit- und Frequenzbereich
 - Modellierung informationsverarbeitender Systeme

b) Rechnerlabor Systemsimulation
 - Einführung in die signalflussorientierte Systemmodellierung (Matlab/Simulink)
 - Einstellung und Anwendung numerischer Simulationsverfahren
 - Modellierung, Identifikation und Parameterstudie eines elektrischen Antriebssystems
 - Modellierung und Auslegung eines Temperaturbeobachters für einen Wechselrichter

Fachkompetenz

Überfachliche Kompetenzen

Die Teilnehmenden können sowohl selbstständig als auch im Team Aufgaben bearbeiten und Problemstellungen lösen. Sie sind in der Lage, die angewandten Methoden der Systemsimulation auch außerhalb der fachlichen Gegenstands bereiche des Studiums anzuwenden.

Literatur

- Skript und digitale Lernmaterialien zur Vorlesung und zum Labor
- Matlab und Simulink, Beispielorientierte Einführung in die Simulation dynamischer Systeme, Addison Wesley Verlag, 1998
Werkstoffe und Leichtbau für Elektromobilität

Die Teilnehmenden besitzen vertiefte Kenntnisse in Werkstoffklassen, die Schlüsseltechnologien für die Elektromobilität darstellen. Dazu zählen das Wissen um die anwendungsspezifischen Anforderungen an die Werkstoffe und deren Eigenschaftsprofile, das Verständnis der werkstoffphysikalischen/chemischen Grundlagen, die Kenntnis der Zusammenhänge von Gefüge und Eigenschaften sowie die Kenntnis wichtiger Fertigungs- und Bearbeitungsprozesse und deren Einfluss auf das Werkstoffgefüge respektive die Eigenschaften.

<table>
<thead>
<tr>
<th>Studienangebot</th>
<th>Master Elektromobilität (berufsbegleitend)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulnummer</td>
<td>4506</td>
</tr>
<tr>
<td>SPO-Version</td>
<td>2.0</td>
</tr>
<tr>
<td>Modulart</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Modulverantwortlicher</td>
<td>Prof. Dr. Volker Knoblauch</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>1</td>
</tr>
<tr>
<td>Angebotshäufigkeit/ Dauer des Moduls</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Credits</td>
<td>5</td>
</tr>
<tr>
<td>Workload Präsenz und virtuelle Präsenz</td>
<td>40 h</td>
</tr>
<tr>
<td>Workload geleitetes E-Learning</td>
<td>0 h</td>
</tr>
<tr>
<td>Workload Selbststudium</td>
<td>60 h</td>
</tr>
<tr>
<td>Workload Prüfungsvorbereitung und Prüfungsdurchführung</td>
<td>50 h</td>
</tr>
<tr>
<td>Verwendung in anderen Studienangeboten</td>
<td>-</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>Grundkenntnisse in Werkstofftechnik, Statik, Festigkeitslehre, Maschinenelemente und Konstruktion, Werkstoffkunde</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Enthaltene Lehrveranstaltungen</td>
<td>a) Werkstoffe für Elektromobilität (3 ECTS) \n b) Leichtbau und Konstruktion (2 ECTS)</td>
</tr>
<tr>
<td>Lehrende/r</td>
<td>a) Prof. Dr. Volker Knoblauch, Dr. Alwin Nagel \n b) Prof. Dr.-Ing. Gerhard Hilscher</td>
</tr>
<tr>
<td>Art der Lehrveranstaltung</td>
<td>Vorlesung, Übung</td>
</tr>
<tr>
<td>Art und Dauer des Leistungsnachweises/ Voraussetzungen für die Vergabe von ECTS-Punkten</td>
<td>a) Klausur (KL) 90 Min. \n b) Klausur (KL) 60 Min.</td>
</tr>
<tr>
<td>Ermittlung der Modulnote</td>
<td>60% KL Werkstoffe für Elektromobilität, 40 % KL Leichtbau und Konstruktion</td>
</tr>
<tr>
<td>Voraussetzung für die Zulassung zur Modulprüfung</td>
<td>-</td>
</tr>
</tbody>
</table>
Zertifikatskurs: Ja

Bemerkungen: -

Lehrinhalte

a) Werkstoffe für Elektromobilität
 - Grundlagen der Funktionswerkstoffe
 - Technologien und Werkstoffe für Hochleistungsakkumulatoren
 - Magnetwerkstoffe für elektrische Maschinen

b) Leichtbau und Konstruktion
 - Einführung in die Thematik „Leichtbau“
 - Leichtbaumaterialien und deren Verwendung
 - Leichtbau und Konstruktion
 - Fahrzeugstruktur und Karosserie
 - Fertigungsverfahren des Leichtbaus
 - Wirtschaftliche Aspekte des Leichtbaus
 - Berechnungsmethoden im Leichtbau
 - Bionik

Fachkompetenz

Die Teilnehmenden besitzen vertiefte Kenntnisse der Materialwissenschaft, insbesondere in Werkstoffklassen, die Schlüsseltechnologien für die Elektromobilität darstellen. Dazu zählen das Wissen um die anwendungsspezifischen Anforderungen an die Werkstoffe und deren Eigenschaftsprofile, das Verständnis der werkstoffphysikalischen/chemischen Grundlagen und der Zusammenhänge von Gefüge und Eigenschaften sowie die Kenntnis wichtiger Fertigungs- und Bearbeitungsprozesse und deren Einfluss auf das Werkstoffgefüge respektive die Eigenschaften.

Überfachliche Kompetenz

Die Teilnehmenden sind in der Lage, sowohl selbstständig als auch im Team Probleme zu lösen und die Lösungen zielgruppengerecht zu präsentieren sowie zu verteidigen.

Literatur

a) Werkstoffe für Elektromobilität
 - Skript zur Vorlesung
 - Bäker: Funktionswerkstoffe, Springer Verlag.
 - Kampfer: Elektromobilproduktion, Springer Vieweg.
b) Leichtbau und Konstruktion

- Skript zur Vorlesung
Semester 2
Elektrische Antriebe

Studienangebot

<table>
<thead>
<tr>
<th>Studienangebot</th>
<th>Master Elektromobilität (berufsbegleitend)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hochschulföderation SüdWest</td>
<td></td>
</tr>
<tr>
<td>Modulnummer</td>
<td>4504</td>
</tr>
<tr>
<td>SPO-Version</td>
<td>2.0</td>
</tr>
<tr>
<td>Modulart</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Modulverantwortlicher</td>
<td>Prof. Dr.-Ing. Frank Tränkle</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>2</td>
</tr>
<tr>
<td>Angebotshäufigkeit / Dauer des Moduls</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Credits</td>
<td>5</td>
</tr>
<tr>
<td>Workload Präsenz und virtuelle Präsenz</td>
<td>48 h</td>
</tr>
<tr>
<td>Workload geleitetes E-Learning</td>
<td>0 h</td>
</tr>
<tr>
<td>Workload Selbststudium</td>
<td>52 h</td>
</tr>
<tr>
<td>Workload Prüfungsvorbereitung und Prüfungsdurchführung</td>
<td>50 h</td>
</tr>
<tr>
<td>Verwendung in anderen Studienangeboten</td>
<td>Master Wasserstoff- und Brennstoffzellentechnologie</td>
</tr>
</tbody>
</table>

Voraussetzungen für die Teilnahme am Modul

- Grundlagen Elektromagnetismus und Dynamik, Wechselstromlehre in komplexer Notation, Kenntnisse der Grundtypen elektrischer Maschinen und ihres stationären Betriebsverhaltens am Netz, Embedded-Software-Entwicklung in C, Grundlagen der Steuerungs- und Regelungstechnik, Grundkenntnisse in MATLAB/Simulink

Sprache

- Deutsch

Enthaltene Lehrveranstaltungen

- a) Elektrische Maschinen und Antriebe (2 ECTS)
- b) Modellbasierte Regelung elektrischer Antriebe (2 ECTS)
- c) Labor Elektrische Maschinen und Antriebe (1 ECTS)
| Lehrende/r | a) Prof. Dr.-Ing. Markus Harke
| | b) Prof. Dr.-Ing. Frank Tränkle
| | c) Prof. Dr.-Ing. Markus Harke / Prof. Dr.-Ing. Frank Tränkle |
| Art der Lehrveranstaltung | Vorlesung, Übung, Labor |
| Art und Dauer des Leistungsnachweises/Voraussetzungen für die Vergabe von ECTS-Punkten | a) Klausur (KL) 60 Min.
| | b) Klausur (KL) 60 Min.
| | c) Protokoll (PK), ca. 10 Seiten pro Labor |
| Ermittlung der Modulnote | 50% KL Elektrische Maschinen und Antriebe,
| | 50% KL Modellbasierte Regelung elektrischer Antriebe
| | PK unbenotet |
| Voraussetzung für die Zulassung zur Modulprüfung | - |
| Zertifikatskurs | Ja |
| Bemerkungen | - |

Lehrinhalte

a) **Elektrische Maschinen und Antriebe**
- Wichtige elektrische Maschinen für Traktionsantriebe
- Grundlagen elektrischer Maschinen: Werkstoffe, Verlustmechanismen, Kühlung, Nutzfelder und Streuung
- Entwurf mit Kenngrößen
- Stationäres Betriebsverhalten von Drehfeldmaschinen am Wechselrichter
- Drehfeldbildung und Drehstromwicklungen

b) **Modellbasierte Regelung elektrischer Antriebe**
- Vorgehensmodell modellbasierte Softwareentwicklung
- Entwurf von Reglerfunktionen für elektrische Antriebe
- Modellierung und Simulation von Regelkreisen für elektrische Antriebssysteme in MATLAB/Simulink
- Auto-Code-Generierung
- Validierung und Verifikation der Antriebsregler

c) **Labor Elektrische Maschinen und Antriebe**
- Aufbau von Prüffeldern für elektrifizierte Antriebe im KFZ
- Prüfung eines elektrischen Traktionsantriebs für Elektro- oder Hybrid-Fahrzeug;
- Modellbildung und Simulation der Dynamik eines Antriebssystems; Entwurf und Modellbildung von Drehmomenten-, Drehzahl- und Positionsreglern
- Auto-Code-Generierung und Inbetriebnahme der Regler auf Antriebssystem
Fachkompetenz

Die Teilnehmenden können unterschiedliche Konzepte für Traktionsantriebe vergleichend gegenüberstellen. Sie können das Betriebsverhalten von Drehfeldmaschinen bei Betrieb am Wechselrichter berechnen und Betriebsgrenzen prognostizieren. Sie sind fähig, eine elektrische Maschine grob zu entwerfen und kennen die wichtigsten Einflussparameter des Entwurfs auf das Antriebsverhalten. Sie können Wicklungen für Drehfeldmaschinen auslegen und die Auswirkungen ihres Entwurfs auf die Drehfeldbildung analysieren.

Die Teilnehmenden können Komponenten und Funktionalität eines Prüffeldes für elektrische Antriebe im KFZ erläutern. Sie sind in der Lage, Prüfungen zum stationären Verhalten eines elektrischen Antriebs zu planen, durchzuführen und auszuwerten. Die Teilnehmenden sind in der Lage, Regler für elektrische Antriebe zu entwerfen, zu simulieren und auf einem realen Antriebssystem in Betrieb zu nehmen und zu testen.

Überfachliche Kompetenz

Die Teilnehmenden sind in der Lage, sowohl im Team als auch selbstständig Probleme zu lösen, Ergebnisse zu diskutieren und zu interpretieren sowie sich zu organisieren.

Literatur

- Skriptum zur Vorlesung
Elektromobile Fahrzeugsysteme

<table>
<thead>
<tr>
<th>Studienangebot</th>
<th>Master Elektromobilität (berufsbegleitend)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hochschulföderation SüdWest</td>
</tr>
<tr>
<td>Modulnummer</td>
<td>4505</td>
</tr>
<tr>
<td>SPO-Version</td>
<td>2.0</td>
</tr>
<tr>
<td>Modulart</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Modulverantwortlicher</td>
<td>Prof. Dr.-Ing. Andreas Daberkow</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>2</td>
</tr>
<tr>
<td>Angebotshäufigkeit/ Dauer des Moduls</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Credits</td>
<td>5</td>
</tr>
<tr>
<td>Workload Präsenz und virtuelle Präsenz</td>
<td>50 h</td>
</tr>
<tr>
<td>Workload geleitetes E-Learning</td>
<td>0 h</td>
</tr>
<tr>
<td>Workload Selbststudium</td>
<td>50 h</td>
</tr>
<tr>
<td>Workload Prüfungsvorbereitung und Prüfungsdurchführung</td>
<td>50 h</td>
</tr>
<tr>
<td>Verwendung in anderen Studienangeboten</td>
<td>-</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>Grundkenntnisse in: Elektrischer Antriebstechnik, Fahrzeugantriebe, Kraftfahrzeugtechnik, Fahrzeugdynamik, Messtechnik und Messdatenverarbeitung (MATLAB/Simulink)</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Enthalte Lehrveranstaltungen</td>
<td>a) Hybride Fahrzeugsysteme (2 ECTS)</td>
</tr>
<tr>
<td></td>
<td>b) Labor Komponenten, Systemdynamik und Test v. E-Fahrzeugen (2 ECTS)</td>
</tr>
<tr>
<td></td>
<td>c) Praktische Vorführung zur Entwicklung von Elektrofahrzeugen und über Zulieferer von Hybridtechnologien (1 ECTS)</td>
</tr>
<tr>
<td>Lehrende/r</td>
<td>a) Prof. Dr.-Ing. László Farkas</td>
</tr>
<tr>
<td></td>
<td>b) Prof. Dr.-Ing. Andreas Daberkow</td>
</tr>
</tbody>
</table>
c) Prof. Dr.-Ing. Andreas Daberkow

Art der Lehrveranstaltung
Vorlesung, Übung, Labor, Exkursion

Art und Dauer des Leistungsnachweises/ Voraussetzungen für die Vergabe von ECTS-Punkten
a) und b) Klausur (KL) 120 Min.
c) Referat in der Gruppe (RE) 20 Min. pro Thema

Ermittlung der Modulnote
80 % KL, 20% RE

Voraussetzung für die Zulassung zur Modulprüfung
Klausur: Teilnahme an Lehrveranstaltung „Theoretische Grundlagen der Elektromobilität“
Modulnummer 4513

Zertifikatskurs
Ja

Bemerkungen
c) Praktische Vorführung / Exkursion:

Lehrinhalte

a) **Hybride Fahrzeugsysteme**
 - Elektrische und hybride Fahrzeugsysteme
 - Praktische Vorführung über Zulieferer von Hybridtechnologien

b) **Labor Komponenten, Systemdynamik und Test v. E-Fahrzeugen**
 - Elektrische Fahrzeugsysteme über Labor Komponenten
 - Systemdynamik und Test von Elektrofahrzeugen

c) **Praktische Vorführung zur Entwicklung von E-Fahrzeugen und über Zulieferer Hybridtechnologien**
 - Sicherer Umgang im Einschätzen von Entwicklungs-, Fertigungs- und Erprobungsaufwänden und einer Abschätzung von Kosten-/ Nutzenaspekten
 - Kenntnis der Produktentstehungsprozesse von Elektrofahrzeugen mit praktischer Vertiefung in Entwicklung, Erprobung oder Fertigung

Fachkompetenz
Sie sind in der Lage, typische Messgrößen von Elektrofahrzeugen (Ströme, Spannungen, Ladezustand, …) an einem Fahrzeug zu erfassen, zu verarbeiten und zu bewerten. Für reale Fahrprofile können sie dynamische Modelle für das Fahrzeug aufstellen und mit den Messergebnissen für die Profile abgleichen.
Sie sind außerdem imstande, z.B. Ladekennlinien zu analysieren und hinsichtlich des Wirkungsgrades zu bewerten.

Überfachliche Kompetenz

Die Teilnehmenden sind in der Lage, sowohl im Team als auch selbstständig Probleme zu lösen indem sie gesehene Konzeptstrukturen überdenken. Sie können Ergebnisse diskutieren und interpretieren sowie sich organisieren.

Literatur

a) **Hybride Fahrzeugsysteme**
 - Umdrucke zur Vorlesung
 - Bosch, Kraftfahrtechnisches Taschenbuch.
 - R. Fischer, Elektrische Maschinen.
 - K. Hofer; Elektrische Antriebe in Fahrzeugen.
 - P. Hofmann, Hybridfahrzeug.
 - H. Wallentowitz, Strategie zur Elektrifizierung des Antriebsstrangs.

b) **Labor Komponenten, Systemdynamik und Test v. E-Fahrzeugen**
 - Umdruck zum Labor
 - H. Wallentowitz, Strategie zur Elektrifizierung des Antriebsstrangs.

c) **Praktische Vorführung zur Entwicklung von E-Fahrzeugen und über Zulieferer Hybridtechnologien**
 - Dokumentationsmaterial von OEM und Zulieferern, Lehr- und Fachbücher, Fachzeitschriften, Dissertationen
Leistungselektronik und Sicherheitskonzepte

<table>
<thead>
<tr>
<th>Studienangebot</th>
<th>Master Elektromobilität (berufsbegleitend)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hochschulföderation SüdWest</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>4507</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>SPO-Version</th>
<th>2.0</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Modulart</th>
<th>Pflichtmodul</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortlicher</th>
<th>Prof. Dr.-Ing. Rainer Uhler</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>2</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Angebotshäufigkeit/ Dauer des Moduls</th>
<th>Sommersemester</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Credits</th>
<th>5</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Workload Präsenz und virtuelle Präsenz</th>
<th>40 h</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Workload geleitetes E-Learning</th>
<th>0 h</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Workload Selbststudium</th>
<th>60 h</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Workload Prüfungsvorbereitung und Prüfungsdurchführung</th>
<th>50 h</th>
</tr>
</thead>
</table>

| Verwendung in anderen Studienangeboten | Master Wasserstoff- und Brennstoffzellentechnologie |

<table>
<thead>
<tr>
<th>Voraussetzungen für die Teilnahme am Modul</th>
<th>Kenntnisse in Mathematik, Regelungstechnik Elektrotechnik, Technische Mechanik, Schwingungslehre Funktionsprinzipien der Energiewandlung, Elektrische Bauteile im Kontext der Leistungselektronik</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sprache</th>
<th>Deutsch</th>
</tr>
</thead>
</table>

| Enthaltene Lehrveranstaltungen | a) Leistungselektronik und Steuergeräte / Sicherheitskonzepte (3 ECTS)
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b) Labor Schaltungsmodellierung und -simulation (2 ECTS)</td>
</tr>
<tr>
<td>Lehrende/r</td>
<td>Prof. Dr.-Ing. Rainer Uhler, Prof. Dr.-Ing. Martin Neuburger</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Art der Lehrveranstaltung</th>
<th>Vorlesung, Übung, Labor</th>
</tr>
</thead>
</table>

| Art und Dauer des Leistungsnachweises/ Voraussetzungen für die Vergabe von ECTS-Punkten | a) Klausur (KL) 90 Min.
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Voraussetzungen für die Vergabe von ECTS-Punkten</td>
<td>b) Protokoll (PK), (5 Berichte à 10 Seiten)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ermittlung der Modulnote</th>
<th>60 % KL, 40 % PK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voraussetzung für die Zulassung zur Modulprüfung</td>
<td>-</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Zertifikatskurs</td>
<td>Ja</td>
</tr>
<tr>
<td>Bemerkungen</td>
<td>-</td>
</tr>
</tbody>
</table>

Lehrinhalte

a) Leistungselektronik und Steuergeräte / Sicherheitskonzepte
- Standard Converter Topologien
 - Buck Converter
 - Boost Converter
 - Single Phase Half Bridge Converter
 - Single Phase Full Bridge Converter
 - Three Phase PWM Voltage Source Inverter
 - Pulse Width Modulation Methods
- Sicherheitskonzepte der E-Mobilität
 - Gefahren des elektrischen Stroms
 - Elektrische Sicherheitstechnik
 - Sicherheitsregeln
 - Eigensichere Hochvoltsysteme
 - Ladekonzepte
 - Ausbildungs- und Qualifizierungsmaßnahmen

b) Labor Schaltungsmodellierung und -simulation
- Simulation von Stromrichterschaltungen in Matlab/Simulink sowie deren Analyse
 - Dreiphasensysteme und deren Beschreibung mit Raumzeigern
 - Buck Converter
 - Boost Converter
 - Single Phase Half Bridge Converter
 - Single Phase Full Bridge Converter
 - Three Phase PWM Voltage Source Inverter
 - Pulse Width Modulation Methods
 - Stromregelung mit Hilfe leistungselektronischer Schaltungen

Fachkompetenz

Aufbauend auf den Kenntnissen eines Bachelorstudienganges wird das elektrotechnische Grundlagenwissen im Bereich der Leistungselektronik erweitert. Die Teilnehmenden beherrschen die Funktionsweise der ausgewählten selbstgeführten Stromrichterschaltungen sowie die hierfür gängigsten Ansteuerverfahren. Sie sind in der Lage, diese in Simulationen umzusetzen und die Funktionsweise der Stromrichter in der Simulation darzustellen. Sie können die neuen Kenntnisse an komplexen technischen Problemstellungen von der Modellbildung, über die rechnergestützte Lösung bis zur Analyse anwenden.

Überfachliche Kompetenz

Die Teilnehmenden sind in der Lage, sowohl im Team als auch selbstständig Probleme zu lösen, Ergebnisse zu diskutieren und zu interpretieren sowie sich zu organisieren.
Literatur

- W. Hirschmann, A. Hauenstein, Schaltnetzteile, Berlin, München: Siemens AG.
- Skript zur Vorlesung „Leistungselektronik und Steuergeräte/Sicherheitskonzepte“.
- Versuchsbeschreibungen der jeweiligen Labortermine.
Antriebsstrang und -systeme

<table>
<thead>
<tr>
<th>Studienangebot</th>
<th>Master Elektromobilität (berufsbegleitend)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulnummer</td>
<td>4509</td>
</tr>
<tr>
<td>SPO-Version</td>
<td>2.0</td>
</tr>
<tr>
<td>Modulverantwortlicher</td>
<td>Prof. Dr. Moritz Gretzschel</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>2</td>
</tr>
<tr>
<td>Angebotshäufigkeit/ Dauer des Moduls</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Credits</td>
<td>5</td>
</tr>
<tr>
<td>Workload Präsenz und virtuelle Präsenz</td>
<td>42 h</td>
</tr>
<tr>
<td>Workload geleitetes E-Learning</td>
<td>0 h</td>
</tr>
<tr>
<td>Workload Selbststudium</td>
<td>54 h</td>
</tr>
<tr>
<td>Workload Prüfungsvorbereitung und Prüfungsdurchführung</td>
<td>54 h</td>
</tr>
<tr>
<td>Verwendung in anderen Studienangeboten</td>
<td>-</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>Grundkenntnisse in Kraftfahrzeugtechnik, Fahrzeugantrieben, Fahrzeugdynamik</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Enthaltene Lehrveranstaltungen</td>
<td>a) Antriebsstrang und -systeme (4 ECTS)</td>
</tr>
<tr>
<td></td>
<td>b) Labor Antriebsstrang und -systeme (1 ECTS)</td>
</tr>
<tr>
<td>Lehrende/r</td>
<td>Prof. Dr. Moritz Gretzschel</td>
</tr>
<tr>
<td>Art der Lehrveranstaltung</td>
<td>Vorlesung, Übung, Labor</td>
</tr>
<tr>
<td>Art und Dauer des Leistungsnachweises/ Voraussetzungen für die Vergabe von ECTS-Punkten</td>
<td>a) Klausur (KL) 90 Min.</td>
</tr>
<tr>
<td></td>
<td>b) Protokoll (PK)</td>
</tr>
<tr>
<td>Ermittlung der Modulnote</td>
<td>100% KL; PK unbenotet</td>
</tr>
<tr>
<td>Voraussetzung für die Zulassung zur Modulprüfung</td>
<td>-</td>
</tr>
</tbody>
</table>
Lehrinhalt

a) Antriebsstrang und -systeme
- Elektrifizierungsgrad und Ausprägung
- Antriebs- und Getriebetopologien elektrifizierter Fahrzeuge
- Analyse, Auslegung und Betriebsgrenzen von Hybridgetrieben
- Fahrdynamik im elektrischen und hybriden Betrieb
- Rekuperationspotenzial und –Strategien

b) Labor Antriebsstrang und -systeme
- Besichtigung von Antriebsstrang- und Rollprüfstand
- Installation und Inbetriebnahme von Messtechnik im Versuchsfahrzeug
- Aufzeichnen einer Versuchsfahrt, Darstellung und Interpretation der Ergebnisse
- Programmieren eines Drehzahl- und Drehmomentenrechners zur Interpretation der Ergebnisse

Fachkompetenz

Die Teilnehmenden können verschiedene Ausprägungen der Fahrzeugelektrifizierung (MHEV, HEV, PHEV, E-REV, BEV) und topologische Antriebskonzepte (parallel, seriell, leistungsverzweigt, straßenverkoppelt) unterscheiden und deren Merkmale benennen. Darüber hinaus können sie selbstständig einfache Simulationsprogramme entwickeln, um den Verlauf der Drehzahlen und Drehmomente aller Komponenten eines Hybridgetriebes zu berechnen und mit der Fahrzeugmessung zu vergleichen.

Überfachliche Kompetenz

Die Teilnehmenden sind in der Lage, gemeinsam am Fahrzeug zu experimentieren und die Ergebnisse zu diskutieren. Sie können selbstständig Berechnungswerkzeuge programmieren.

Literatur
- Skript zur Vorlesung
- K. Hofer; Elektrische Antriebe in Fahrzeugen.
- P. Hofmann, Hybridfahrzeug.
- H. Wallentowitz, Strategie zur Elektrifizierung des Antriebsstrangs.
Transferprojekt I

Die Teilnehmenden beherrschen die Anwendung der jeweils angemessenen Arbeitsmethoden, die sich an der konkreten Aufgabenstellung ausrichten. Sie sind in der Lage, Daten zu interpretieren und zu bewerten. Komplexe Inhalte können sie klar und zielgruppengerecht präsentieren und verteidigen, sowohl mündlich als auch schriftlich.

<table>
<thead>
<tr>
<th>Studienangebot</th>
<th>Master Elektromobilität (berufsbegleitend)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hochschulförderung SüdWest</td>
<td></td>
</tr>
<tr>
<td>Modulnummer</td>
<td>4515</td>
</tr>
<tr>
<td>SPO-Version</td>
<td>2.0</td>
</tr>
<tr>
<td>Modulart</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Modulverantwortlicher</td>
<td>Prof. Dr.-Ing. Gerd Wittler</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>2</td>
</tr>
<tr>
<td>Angebotshäufigkeit/ Dauer des Moduls</td>
<td>Sommersemester, 3 Monate Bearbeitung / ggf. Blockwoche Auslandsmodul</td>
</tr>
<tr>
<td>Credits</td>
<td>5</td>
</tr>
<tr>
<td>Workload Präsenz und virtuelle Präsenz</td>
<td>0 h (ggf. 30 – 40 h im Auslandsmodul/Projektwoche)</td>
</tr>
<tr>
<td>Workload geleitetes E-Learning</td>
<td>0 h</td>
</tr>
<tr>
<td>Workload Selbststudium</td>
<td>130 h</td>
</tr>
<tr>
<td>Workload Prüfungsvorbereitung und Prüfungs durchführung</td>
<td>20 h</td>
</tr>
<tr>
<td>Verwendung in anderen Studienangeboten</td>
<td>Master Wasserstoff- und Brennstoffzellentechnologie</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>-</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch (ggf. Englisch im Auslandsmodul)</td>
</tr>
<tr>
<td>Enthaltene Lehrveranstaltungen</td>
<td>Transferprojekt I (5 ECTS)</td>
</tr>
<tr>
<td>Lehrende/r</td>
<td>Individuell je nach Thema</td>
</tr>
<tr>
<td>Art der Lehrveranstaltung</td>
<td>Projekt</td>
</tr>
<tr>
<td>Art und Dauer des Leistungs nachweises/ Voraussetzungen für die Vergabe von ECTS-Punkten</td>
<td>Projektarbeit (PA); ca. 15-25 inhaltliche Seiten</td>
</tr>
<tr>
<td>Ermittlung der Modulnote</td>
<td>100 % PA</td>
</tr>
<tr>
<td>Voraussetzung für die Zulassung zur Modulprüfung</td>
<td>-</td>
</tr>
<tr>
<td>Zertifikatskurs</td>
<td>nein</td>
</tr>
<tr>
<td>Bemerkungen</td>
<td>-</td>
</tr>
</tbody>
</table>
Lehrinhalte
- Bearbeitung einer individuell festgelegten Aufgabenstellung aus dem thematischen Umfeld der Studieninhalte des Masterstudiengangs Elektromobilität. Die Ausarbeitung erfolgt zu Hause oder im Arbeitsumfeld.

Ggf. bieten wir als Alternative folgende Auswahlmöglichkeit an:

Fachkompetenz

Überfachliche Kompetenz
Die Teilnehmenden sind in der Lage, eigenverantwortlich und termingerecht ein Projekt zu bearbeiten, indem sie komplexe Probleme analysieren, strukturieren und lösen können. Sie sind in der Lage, sich selbst zu organisieren und können Kritik annehmen und sich konstruktiv damit auseinandersetzen.

Literatur
Individuelle Literatur entsprechend dem Themengebiet.
Semester 3
Systems Engineering

<table>
<thead>
<tr>
<th>Studienangebot</th>
<th>Master Elektromobilität (berufsbegleitend)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HfSW Südwest</td>
<td></td>
</tr>
<tr>
<td>Modulnummer</td>
<td>4516</td>
</tr>
<tr>
<td>SPO-Version</td>
<td>2.0</td>
</tr>
<tr>
<td>Modulart</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Modulverantwortlicher</td>
<td>Prof. Dr. Ralf Wörner</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>3</td>
</tr>
<tr>
<td>Angebotshäufigkeit/ Dauer des Moduls</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Credits</td>
<td>5</td>
</tr>
<tr>
<td>Workload Präsenz und virtuelle Präsenz</td>
<td>46 h</td>
</tr>
<tr>
<td>Workload geleitetes E-Learning</td>
<td>0 h</td>
</tr>
<tr>
<td>Workload Selbststudium</td>
<td>66 h</td>
</tr>
<tr>
<td>Workload Prüfungsvorbereitung und Prüfungsdurchführung</td>
<td>38 h</td>
</tr>
<tr>
<td>Verwendung in anderen Studienangeboten</td>
<td>Master Wasserstoff- und Brennstoffzellentechnologie</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>Grundlagen der Mathematik</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Enthaltene Lehrveranstaltungen a)</td>
<td>Systems Engineering (3 ECTS)</td>
</tr>
<tr>
<td>b)</td>
<td>Projektmanagement (2 ECTS)</td>
</tr>
<tr>
<td>Lehrende/r</td>
<td>a) Prof. Dr. Thorsten Zenner</td>
</tr>
<tr>
<td>b) Prof. Dr. Ralf Wörner</td>
<td></td>
</tr>
<tr>
<td>Art der Lehrveranstaltung</td>
<td>Vorlesung, Übung</td>
</tr>
<tr>
<td>Art und Dauer des Leistungsnachweises/ Voraussetzungen für die Vergabe von ECTS-Punkten</td>
<td>HR (Hausarbeit / Referat), Hausarbeit 20-25 Seiten, Referat in der Gruppe, Dauer: 15 Min.</td>
</tr>
<tr>
<td>Ermittlung der Modulnote</td>
<td>100% HR (50% Hausarbeit, 50 % Referat)</td>
</tr>
<tr>
<td>Voraussetzung für die Zulassung zur Modulprüfung</td>
<td>-</td>
</tr>
<tr>
<td>Zertifikatskurs</td>
<td>nein</td>
</tr>
<tr>
<td>Bemerkungen</td>
<td>-</td>
</tr>
</tbody>
</table>
Lehrinhalt

a) Systems Engineering
- Begriffe und Definitionen (System, technisches System, Mechatronisches System, Systemstruktur, Funktionssstruktur, Variabilität, Problemraum, Lösungsraum, …)
- Vorgehensmodelle (Wasserfall-, V-, Spiralmodell, PEP)
- Systemkontext
- Systementwurf, Requirements Engineering, Systementwurf / Architekturphase, Systemdesign jeweils dokumentenbasiert und modellbasiert
- Fallstudien zur Veranschaulichung von Methoden und Werkzeugen

b) Projektmanagement
- Projekt-Organisationsformen
- Projekt-Definition nach DIN
- Projektlauf / Phasenmodell
- Projektplanung (Termin-, Kosten-, Kapazitätsplanung)
- Netzplantechnik – Beispiel
- Termin-Kosten-Trade-offs
- Teambildung, Rolle des Projektleiters
- Projekt-Controlling, Projekte als Kostenträger
- Zielkostenmanagement (Target Costing)
- Projektmanagement-Tools
- Multiprojekt-Management
 - F&E-Projekt-Typen
 - Projekt-Portfolio
 - Integrierte Projekt-Programm-Planung

Fachkompetenz

Überfachliche Kompetenz

Die Teilnehmenden verstehen domänenspezifischen Vorgehensweisen und können mit Fachleuten anderer Disziplinen zusammenarbeiten.

Sie können ihr Wissen auf unterschiedlichen Gebieten unter Berücksichtigung sicherheitstechnischer, wirtschaftlicher, rechtlicher, sozialer und ökologischer Erfordernisse verantwortungsbewusst anwenden und eigenverantwortlich vertiefen.

Literatur

a) Systems Engineering

- Incose Systems-Engineering Handbuch V. 3.2.2-de, GfSE-HB-001-01b, Ausgabe Februar 2013.
- Pohl, Klaus: Requirements Engineering, dpunkt.verlag, 2008.

b) Projektmanagement

- Skript zur Vorlesung
Fahrer und Fahrstrategien

<table>
<thead>
<tr>
<th>Studienangebot</th>
<th>Master Elektromobilität (berufsbegleitend)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HfSW Hochschulföderation Südwest</td>
<td></td>
</tr>
<tr>
<td>Modulnummer</td>
<td>4510</td>
</tr>
<tr>
<td>SPO-Version</td>
<td>2.0</td>
</tr>
<tr>
<td>Modulart</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Modulverantwortlicher</td>
<td>Prof. Dr. Moritz Gretzschel</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>3</td>
</tr>
<tr>
<td>Angebotshäufigkeit/ Dauer des Moduls</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Credits</td>
<td>5</td>
</tr>
<tr>
<td>Workload Präsenz und virtuelle Präsenz</td>
<td>44 h</td>
</tr>
<tr>
<td>Workload geleitetes E-Learning</td>
<td>0 h</td>
</tr>
<tr>
<td>Workload Selbststudium</td>
<td>56 h</td>
</tr>
<tr>
<td>Workload Prüfungsvorbereitung und Prüfungsdurchführung</td>
<td>50 h</td>
</tr>
<tr>
<td>Verwendung in anderen Studienangeboten</td>
<td>Master Wasserstoff- und Brennstoffzellentechnologie</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>-</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Enhaltene Lehrveranstaltungen</td>
<td>a) Energetische Betriebsstrategien und Thermomanagement (3 ECTS)</td>
</tr>
<tr>
<td></td>
<td>b) Usability Engineering (2 ECTS)</td>
</tr>
<tr>
<td>Lehrende/r</td>
<td>a) Prof. Dr. Moritz Gretzschel; Herr Roland Kleemann</td>
</tr>
<tr>
<td></td>
<td>b) Herr Tobias Schneider</td>
</tr>
<tr>
<td>Art der Lehrveranstaltung</td>
<td>Vorlesung, Übung, Labor</td>
</tr>
<tr>
<td>Art und Dauer des Leistungsnachweises/ Voraussetzungen für die Vergabe von ECTS-Punkten</td>
<td>a) Klausur (KL) 90 Min.</td>
</tr>
<tr>
<td></td>
<td>b) Referat in der Gruppe (RE) 30 Min.</td>
</tr>
</tbody>
</table>
Ermittlung der Modulnote 60 % KL, 40 % RE

Voraussetzung für die Zulassung zur Modulprüfung -

Zertifikatskurs Ja

Bemerkungen -

Lehrinhalte

a) Energetische Betriebsstrategie und Thermomanagement
 - elektrische Fahrentscheidung, Zustart und Emissionierung
 - Betriebsmodi, Gesetzliche Anforderungen und Typprüf-Vorschriften
 - Energiemanagement (SOC, Klimatisierung, Thermomanagement) und energetische Vorausschau
 - Aspekte des Wärmemanagements sowie Grundlagen der Thermodynamik
 - Auslegung und Absicherung der Fahrzeugklimatisierung im Sommer und Winterbetrieb
 - Speicher-Thermomanagement im Systemansatz sowie Kopplung von Wärmequellen und Senken.

b) Usability Engineering
 Vermittlung der Grundlagen von
 - Usability
 - mensch-zentrierter Gestaltung (User Centered Design)
 - iterativen Designs
 - User Experience Design
 o Nutzungskontextanalyse
 o Spezifikation und Modellierung
 o Gestaltung von Mensch-Maschine-Schnittstellen
 o Prototyping
 o Evaluierung

Fachkompetenz

Die Teilnehmenden können Implementierungsmöglichkeiten energetischer Betriebsstrategie erklären und Gesamtwirkungsgrade bestimmen, um Wechselwirkungen zwischen Betriebsstrategie und Mensch-Maschine-Interface vorherzusagen und gegenüberzustellen.

Die Teilnehmenden sind in der Lage, die Grundlagen des Wärmetransports zu erklären, den Klimakomfort klimaphysiologisch grundlegend zu bewerten sowie ansatzweise eine Wärmebilanz zu bilden.

Überfachliche Kompetenz

Die Teilnehmenden sind in der Lage, sowohl im Team als auch selbstständig Probleme zu lösen, Ergebnisse zu diskutieren und zu interpretieren sowie sie zielgruppengerecht zu präsentieren.
Literatur

a) Energetische Betriebsstrategie und Thermomanagement
 - Skript zur Vorlesung
 - H. Wallentowitz, Strategie zur Elektifizierung des Antriebsstrangs
 - A. Meroth, B. Tolg: Infotainmentsysteme im Kraftfahrzeug
 - P. Schneiderman, C. Plaisant: Designing the User Interface
 - A. Jossen, W. Weydanz: Moderne Akkumulatoren richtig einsetzen
 - H. Grossmann: PKW Klimatisierung

b) Usability Engineering
 - Präsentationen der Vorlesung
Mobile Energiesysteme

<table>
<thead>
<tr>
<th>Studienangebot</th>
<th>Master Elektromobilität (berufsbegleitend)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HfSW Hochschulföderation Südwest</td>
<td></td>
</tr>
<tr>
<td>Modulnummer</td>
<td>4511</td>
</tr>
<tr>
<td>SPO-Version</td>
<td>2.0</td>
</tr>
<tr>
<td>Modulart</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Modulverantwortlicher</td>
<td>Prof. Dr. Ralf Wörner</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>3</td>
</tr>
<tr>
<td>Angebotshäufigkeit/ Dauer des Moduls</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Credits</td>
<td>5</td>
</tr>
<tr>
<td>Workload Präsenz und virtuelle Präsenz</td>
<td>48 h</td>
</tr>
<tr>
<td>Workload geleitetes E-Learning</td>
<td>0 h</td>
</tr>
<tr>
<td>Workload Selbststudium</td>
<td>50 h</td>
</tr>
<tr>
<td>Workload Prüfungsvorbereitung und Prüfungsdurchführung</td>
<td>52 h</td>
</tr>
<tr>
<td>Verwendung in anderen Studienangeboten</td>
<td>-</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>Grundkenntnisse in Allgemeiner und Physikalischer Chemie, Kenntnisse in Physik und Elektrotechnik</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Enthaltene Lehrveranstaltungen</td>
<td>a) Einführung in die Batterie- und Brennstoffzellentechnologie (4 ECTS)</td>
</tr>
<tr>
<td></td>
<td>b) Labor Batterie- und Brennstoffzellentechnologie (1 ECTS)</td>
</tr>
<tr>
<td>Lehrende/r</td>
<td>a) Prof. Dr. Ralf Wörner; Dr. Ludwig Jörissen</td>
</tr>
<tr>
<td></td>
<td>b) Herr Yannick Wiese, Prof. Dr. Ralf Wörner</td>
</tr>
<tr>
<td>Art der Lehrveranstaltung</td>
<td>Vorlesung, Übung, Labor</td>
</tr>
<tr>
<td>Art und Dauer des Leistungsnachweises/</td>
<td>a) Klausur (KL) 120 Min.</td>
</tr>
<tr>
<td></td>
<td>b) Protokoll (PK), ca. 10 Seiten</td>
</tr>
</tbody>
</table>
Voraussetzungen für die Vergabe von ECTS-Punkten

Ermittlung der Modulnote
100% KL; PK unbenotet

Voraussetzung für die Zulassung zur Modulprüfung
-

Zertifikatskurs
Ja

Bemerkungen
-

Lehrinhalte
- Übersicht und Einführung in elektrochemische Energiespeicher
- Nachhaltigkeit und Zukunftstrends für elektrochemische Speicher im Überblick
- Grundkenntnisse in Elektrochemie (Anode, Kathode, Elektrolyt, Aufbau einer Zelle)
- Thermodynamik und Kinetik für galvanische Elemente (Batterien und Brennstoffzellen)
- Charakterisierung von Batterien (Messtechnik: spezifische Energie, Entladekurven, Speicherwirkungsgrad)
- Charakterisierung von Brennstoffzellen (Messtechnik: Stromdichte/Spannungskurven, Leistungsleistung)
- Materialien für Batterien und Brennstoffzellen (Elektroden, Elektrolyte) und Herstellungsverfahren
- Verfahrenstechnik zu Batterien und Brennstoffzellen in Fahrzeugen

Fachkompetenz
Die Teilnehmenden können die am Markt bestehenden Energiespeicherkonzepte mit Fokus auf batterieelektrische Speicher analysieren, sowie nach einfachen Kriterien klassifizieren. Sie verstehen Trends und Potentiale für zukünftige Anwendungen und können die Nachhaltigkeit der Konzepte kritisch hinterfragen.

Überfachliche Kompetenz
Die Teilnehmenden sind in der Lage, sowohl selbständig als auch im Team realitätsnahe Probleme zu lösen. Dabei können sie für ihre Meinung einstehen und die Ergebnisse zielgruppengerecht präsentieren.
Literatur

Transferprojekt II

Die Teilnehmenden beherrschen die Anwendung der jeweils angemessenen Arbeitsmethoden, die sich an der konkreten Aufgabenstellung ausrichten. Sie sind in der Lage, Daten zu interpretieren und zu bewerten. Komplexe Inhalte können sie klar und zielgruppengerecht präsentieren und verteidigen, sowohl mündlich als auch schriftlich. Sie können eigenständig eine wissenschaftliche Arbeit anfertigen, ihr Thema schlüssig vortragen und Fragen kompetent beantworten.

<table>
<thead>
<tr>
<th>Studienangebot</th>
<th>Master Elektromobilität (berufsbegleitend)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hochschulföderation SüdWest</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>4517</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>SPO-Version</th>
<th>2.0</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortlicher</th>
<th>Prof. Dr.-Ing. Gerd Wittler</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>3</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Angebotshäufigkeit/ Dauer des Moduls</th>
<th>Wintersemester</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Credits</th>
<th>5</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Workload Präsenz und virtuelle Präsenz</th>
<th>0 h</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Workload geleitetes E-Learning</th>
<th>0 h</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Workload Selbststudium</th>
<th>130 h</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Workload Prüfungsvorbereitung und Prüfungsdurchführung</th>
<th>20 h</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Verwendung in anderen Studienangeboten</th>
<th>Master Wasserstoff- und Brennstoffzellentechnologie</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Voraussetzungen für die Teilnahme am Modul</th>
<th>-</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sprache</th>
<th>Deutsch</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Enhaltene Lehrveranstaltungen</th>
<th>Transferprojekt II (5 ECTS)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r</th>
<th>Individuell je nach Thema</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Art der Lehrveranstaltung</th>
<th>Projekt</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Art und Dauer des Leistungsnachweises/ Voraussetzungen für die Vergabe von ECTS-Punkten</th>
<th>Projektarbeit (PA); ca. 15-25 inhaltliche Seiten</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Ermittlung der Modulnote</th>
<th>100 % PA</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Voraussetzung für die Zulassung zur Modulprüfung</th>
<th>-</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Zertifikatskurs</th>
<th>nein</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Bemerkungen</th>
<th>-</th>
</tr>
</thead>
</table>
Lehrinhalte

Individuell aus dem thematischen Umfeld der Studieninhalte des Masterstudiengangs Elektromobilität.

Fachkompetenz

Überfachliche Kompetenz

Die Teilnehmenden sind in der Lage, eigenverantwortlich und termingerecht ein Projekt zu bearbeiten, indem sie komplexe Probleme analysieren, strukturieren und lösen können. Sie sind in der Lage, sich selbst zu organisieren und können Kritik annehmen und sich konstruktiv damit auseinandersetzen.

Literatur

Individuelle Literatur entsprechend dem Themengebiet.
Semester 4
Mastermodul

Die Teilnehmenden verstehen die Verbindung zwischen Wissenschaft und Praxis und können unter Verwendung der jeweils angemessenen Methoden innerhalb einer vorgegebenen Frist selbstständig eine Fragestellung aus dem Aufgabengebiet bearbeiten, Daten interpretieren und bewerten und die Ergebnisse sachgerecht darstellen. Sie können komplexe fachbezogene Inhalte präsentieren und verteidigen, sowohl mündlich als auch schriftlich. Sie sind fähig, effiziente Arbeitstechniken zu entwickeln.

Studienangebot
Master Elektromobilität (berufsbegleitend)
HfSW Hochschulföderation Südwest

Modulnummer
4518

SPO-Version
2.0

Modulart
Pflichtmodul

Modulverantwortlicher
Prof. Dr.-Ing. Gerd Wittler

Studiensemester
4

Angebotshäufigkeit/ Dauer des Moduls
Sommersemester

Credits
25

Workload Präsenz und virtuelle Präsenz
6 h

Workload geleitetes E-Learning
0 h

Workload Selbststudium
694 h

Workload Prüfungsvorbereitung und Prüfungsdurchführung
50 h

Verwendung in anderen Studienangeboten
Master Wasserstoff- und Brennstoffzellentechnologie

Voraussetzungen für die Teilnahme am Modul
Alle anderen Pflichtmodule des Curriculums müssen erfolgreich abgeschlossen sein.

Sprache
Deutsch oder Englisch

Enthaltene Lehrveranstaltungen

a)	Forschungsmethoden (2 ECTS)
b)	Masterarbeit (20 ECTS)
c)	Kolloquium (3 ECTS)

Lehrende/r

| a) | Prof. Dr.-Ing. Andreas Häger |
| b) | und c) Individuell je nach Thema |

Art der Lehrveranstaltung
Masterarbeit

Art und Dauer des Leistungsnachweises/ Voraussetzungen für die Vergabe von ECTS-Punkten

a)	Proposal (ST), ca. 2-3 Seiten
b)	Abhandlung (BE), Umfang hängt stark von der Aufgabenstellung und dem Arbeitsprodukt ab, Richtwert ca. 60-100 inhaltliche Seiten
c)	Referat (RE) und mündliche Prüfung (MP) 30 Min.

Ermittlung der Modulnote
Masterarbeit und Kolloquium entsprechend gewichtet nach ECTS-Verteilung
Forschungsmethoden unbenotet (muss bestanden sein)
Voraussetzung für die Zulassung zur Modulprüfung

Der Teilnehmende reicht zusammen mit der Anmeldung eine Kurzfassung (Proposal, Umfang 2-3 Seiten) des Themas ein.

Zertifikatskurs

Nein

Bemerkungen

Die Präsentation von 30 Minuten umfasst zumindest die Problembeschreibung/ Fragestellung der Arbeit, die theoretischen Bezüge, die eingesetzten Methoden sowie die zentralen Ergebnisse.

Lehrinhalte

Individuell aus dem thematischen Umfeld der Studieninhalte des Masterstudiengangs Elektromobilität.

Fachkompetenz

Überfachliche Kompetenz

Literatur

Individuelle Literatur entsprechend dem Themengebiet